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* This paper investigates robust optimization methods for mean-variance

2 (MV) portfolio selection problems under the estimation risk in mean
n returns. We show that with an ellipsoidal uncertainty set based on the
2 statistics of the sample mean estimates, the portfolio from the min-max
2 robust MV model equals the portfolio from the standard MV model based

on the nominal mean estimates but with a larger risk aversion parameter.
We demonstrate that the min-max robust portfolios can vary significantly
with the initial data used to generate uncertainty sets. In addition, min-
max robust portfolios can be too conservative and unable to achieve a high
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28 return. Adjustment of the conservatism in the min-max robust model can be
2 achieved only by excluding poor mean-return scenarios, which runs counter
3 to the principle of min-max robustness. We propose a conditional value-at-

risk (CVaR) robust portfolio optimization model to address estimation risk.
We show that using CVaR to quantify the estimation risk in mean return,
the conservatism level of the portfolios can be more naturally adjusted
by gradually including better scenarios; the confidence level B can be
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34 interpreted as an estimation risk aversion parameter. We compare min-max
35 robust portfolios with an interval uncertainty set and CVaR robust portfolios
36 in terms of actual frontier variation, efficiency and asset diversification.
. We illustrate that the maximum worst-case mean return portfolio from the

min-max robust model typically consists of a single asset, no matter how
an interval uncertainty set is selected. In contrast, the maximum CVaR
mean return portfolio typically consists of multiple assets. In addition,
we illustrate that for the CVaR robust model, the distance between the
41 actual MV frontiers and the true efficient frontier is relatively insensitive
® for different confidence levels, as well as different sampling techniques.
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1 INTRODUCTION

Financial portfolio selection seeks to maximize return and minimize risk. In the
mean-variance (MV) model introduced by Markowitz (1952), assets are allocated
to maximize the expected rate of the portfolio return, as well as to minimize the
variance. A portfolio allocation is considered to be efficient if it has the minimum
risk for a given level of expected return.

Despite its theoretical importance to modern finance, the MV model is known
to suffer severe limitations in practice. One of the basic problems that limits the
applicability of the MV model is the inevitable estimation error in the asset mean
returns and the covariance matrix. Best and Grauer (1991) analyze the effect of
changes in mean returns on the MV efficient frontier and compositions of optimal
portfolios. Broadie (1993) investigates the impact of errors in parameter estimates
on the actual frontiers, which are obtained by applying the true parameters on
the portfolio weights derived from their estimated parameters. Thus the actual
frontier represents the actual performance of optimal portfolios based on estimated
model parameters. Both of these studies show that different input estimates to the
MYV model can result in large variations in the composition of efficient portfolios.
Unfortunately, accurate estimation of mean returns is notoriously difficult. Since
estimation of the covariance matrix is relatively easier, we focus, in this paper, on
the estimation error in mean return only, and investigate appropriate ways to take
this estimation risk into account in the MV model.

Recently min-max robust portfolio optimization has been an active research area;
see, for example, Garlappi et al (2007), Goldfarb and Iyengar (2003), Tiitiincii
and Koenig (2004). Min-max robust optimization yields the optimal portfolio that
has the best worst-case performance within the given uncertainty sets of the input
parameters. The uncertainty set typically corresponds to some confidence level 8.
In this regard, min-max robust optimization can be considered as a quantile-based
approach, similar to the value-at-risk (VaR) measure. One drawback of the min-
max approach is that, similarly to VaR, it entirely ignores the severity of the tail
scenarios that occur with a probability of 1 — g. In addition, the dependence on a
single large loss scenario makes a min-max robust portfolio quite sensitive to the
initial data used to generate uncertainty sets. In practice, it can be difficult to choose
appropriate uncertainty sets.

One of the main objectives of this paper is to propose a conditional value-at-risk
(CVaR) robust portfolio optimization model, which selects a portfolio under the
CVaR measure for the estimation risk in mean return. Instead of focusing on the
worst-case scenario in the uncertainty set, an optimal portfolio is selected based
on the tail of the large mean loss scenarios specified by a confidence level. The
conservatism level can be controlled by adjusting the confidence level. Therefore
the model parameter uncertainty is considered as a special type of risk. The CVaR
of a portfolio’s mean loss is used as a performance measure of this portfolio. In
addition to minimizing the variance of the portfolio return, the CVaR robust model
determines the optimal portfolio by maximizing the average over the tail of the
worst mean returns with respect to an assumed distribution. The proposed CVaR
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Min-max robust and CVaR robust mean-variance portfolios

robust formulation provides robustness by considering the average of the tail of
poor mean return scenarios. As the confidence level 8 approaches 1, the CVaR
robust measure in mean return uncertainty also becomes focused on the worst
scenario. Decreasing the confidence level, however, leads to the consideration of
better mean return scenarios and thus is less dependent on the worst case. When
B =0, the CVaR robust measure in mean return uncertainty takes all possible mean
returns into consideration. This may be appropriate when an investor has complete
tolerance to estimation risk. Thus the confidence level 8 in the CVaR robust model
can be used as an estimation risk aversion parameter. The proposed CVaR robust
MYV portfolio formulation is described in Section 3.

Before introducing the CVaR robust model, in Section 2, we first review the min-
max robust portfolio optimization framework and highlight its potential problems.
We show that with an ellipsoidal uncertainty set based on the statistics of the sample
mean estimates, the robust portfolio from the min-max robust MV model equals
the portfolio from the standard MV model based on the nominal mean estimate, but
with a larger risk aversion parameter. We also illustrate the characteristics of min-
max robust portfolios with an interval uncertainty set. If the uncertainty interval
for mean return contains the worst sample scenario, the min-max robust model
often produces portfolios with very low return. Portfolios with higher return can
be generated in a min-max robust model by choosing the uncertainty interval to
correspond to a smaller confidence interval. Unfortunately, this is at the expense of
ignoring worse sample scenarios.

In Section 4, we compare min-max robust and CVaR robust methods from the
following perspectives: the ease of adjusting the robustness level according to an
investor’s aversion to estimation risk, the variations in actual frontiers and the
closeness of the actual frontiers to the true efficient frontier, and the diversification
level of the resulting robust portfolios. Diversification is an important way to reduce
the overall portfolio return risk by spreading the investment across a wide variety
of asset classes. We show that for the min-max robust formulation with interval
uncertainty sets, the maximum worst-case expected return portfolio (corresponding
to A =0 in the min-max model) always consists of a single asset; using CVaR
to measure estimation risk in mean return, the resulting robust portfolio, which
maximizes the CVaR of mean return, is more diversified. We show computationally,
in addition, that the diversification level decreases as the estimation risk aversion
parameter decreases. We also consider two different distributions to characterize
uncertainty in mean return estimation, and compare the diversification level of
CVaR robust portfolios between two different sampling techniques.

One way of computing CVaR robust portfolios is to discretize, via simulation,
the CVaR robust optimization problem. The CVaR function is approximated by a
piecewise linear function, and the discretized CVaR optimization problem can be
formulated as a quadratic programming (QP) problem. However, the QP approach
becomes inefficient when the number of simulations or the number of assets
becomes large. In Section 5, a smoothing technique is proposed to compute
CVaR robust portfolios. In contrast to the QP approach, the smoothing method
uses a continuously differentiable piecewise quadratic function to approximate
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L. Zhu et al

the CVaR function. We illustrate that when the computation of CVaR robust
portfolios becomes a large-scale optimization problem, the smoothing approach
is computationally more efficient than the QP approach. We conclude the paper in
Section 6.

2 MIN-MAX ROBUST ACTUAL FRONTIERS

Let u € R" be the vector of the mean returns of n risky assets and Q be the n-by-n
positive semi-definite covariance matrix. Let x;, 1 <i < n, denote the percentage
holding of the ith asset. A MV efficient portfolio x solves the following QP
problem:

min —,uTx + )»xTQx
* )

subjectto x € Q

where A > 0 is the risk aversion parameter and €2 denotes the feasible portfolio
set. Unless otherwise stated, in this paper, Q2 = {x € R" | elx=1,x> 0}, where ¢
denotes the n-by-1 vector of all ones.

Let x*(A) denote the optimal MV portfolio (1) with the risk aversion parameter
A > 0. The curve {(v/x*(M)T Qx*(1), uTx*(1)), A >0} in the space of standard
deviation and mean is the efficient frontier. When L =0, x*(0) is the maximum-
return portfolio, which ignores the risk. When A = oo, problem (1) yields the
minimum-variance portfolio.

In practice, the mean return p and the covariance matrix Q are not known.
Estimates ji and Q are typically computed from empirical return observations.
Unfortunately, MV optimal portfolios can be very sensitive to estimation errors,
which can be quite large.

Recent development in efficient computational methods for robust optimization
problems has generated great interest in min-max robust portfolio optimization. In
robust optimization, uncertainty sets specify most or all of the possible realizations
for the input parameters, which typically correspond to a confidence level under
an assumed distribution. Assume that the uncertainty sets for the mean vector u
and the covariance matrix Q are S, and Sg, respectively. The min-max robust
formulation for (1) can be expressed as follows:

: T T
min max —pu x4+ Ax Ox
28 HES,, QS (2)

subjectto x € Q

Robust portfolios depend heavily on specification of uncertainty sets. Goldfarb
and Iyengar (2003) use ellipsoidal uncertainty sets and formulate problem (2) as
a second-order cone programming (SOCP) problem. Tiitlincii and Koenig (2004)
consider intervals as uncertainty sets and solve problem (2) using a saddle-point
method. In addition, Lobo and Boyd (1999) show that an optimal portfolio that
minimizes the worst-case risk under each or a combination of the above uncertainty
structures can be computed efficiently using analytic center cutting plane methods.
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Min-max robust and CVaR robust mean-variance portfolios

Assuming that the covariance matrix Q is known, Garlappi et al (2007) consider
the ellipsoidal uncertainty set based on the following statistical properties of the
mean estimates. Assume that asset returns have a joint normal distribution, and
mean estimate it is computed from 7 samples of n assets. If the covariance matrix
Q is known, then the quantity:

T2 G 10" 07 (- o 3)

(T — Dn
has a )(,12 distribution with n degrees of freedom. Specifically, Garlappi et al (2007)
consider the following ellipsoidal uncertainty set for the min-max robust portfolio
optimization:

(=" Q™ (@~ = x “)
where x = ((T — 1)n/T(T —n))qg >0 and g is a quantile for some confidence
level based on (3).

How does the min-max robust MV portfolio differ from the MV portfolio based
on nominal estimates? In order to analyze the precise relationship between the min-
max robust portfolio and the standard MV portfolio, instead of (1), we first consider
the mean-standard deviation formulation below:

min  —u’x +1y/xT QOx (5)
X
subject to elx = 1, x>0

which generates the same MV efficient frontier as (1).
Using the same ellipsoidal uncertainty set (4), the robust min-max optimization
problem for (5) becomes:

min  max —u! x + Av/xT Qx
x n

subjectto (it — )" Q7! (1 — w) < x ©
elx = 1, x>0
Theorem 2.1' shows that the min-max robust portfolio from (6) always cor-
responds to the optimal mean-standard deviation portfolio (5) based on nominal
estimates i« and Q, but with the larger risk aversion parameter A + ,/x. The proof
is presented in Appendix A.

THEOREM 2.1 Assume that Q is symmetric positive definite and y > 0. The min-
max robust portfolio for (6) is an optimal portfolio of the mean-standard deviation
problem (5) with nominal estimates 1 and Q for the larger risk aversion parameter

r+ X

TAsis pointed out by a referee, this result has also been observed in Schottle and Werner (2006)
and Meucci (2005).
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FIGURE 1 Min-max robust frontier: squeezed frontier from the nominal problem
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From Theorem 2.1, the min-max robust mean-standard deviation model adds
robustness by increasing the risk aversion parameter from A to A + ,/x. Thus fron-
tiers from the min-max robust mean-standard deviation model, with the uncertainty
set based on (3), are squeezed segments of the frontiers from the mean-standard
deviation model based on the nominal estimates; see Figure 1.

33
34
35
36
37
3 In terms of the MV optimal portfolio, the relationship between the risk aversion
» parameters is not as explicit. It can be shown that the min-max robust mean variance

w0 portfolio, which solves:
41

= min max —u’x+ix’ Qx
43 X [
u subjectto (2 — w7 Q7 (1 — ) < x @

45

eTx=1, x>0
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Min-max robust and CVaR robust mean-variance portfolios

is a standard mean variance optimal portfolio (1) with the nominal estimates ;& and
Q for some larger risk aversion parameter. This is formally stated in Theorem 2.2.
The proof is given in Appendix A.

THEOREM 2.2 Assume that Q is symmetric positive definite and x > 0. Any min-
max robust MV portfolio (7) is an optimal MV portfolio (1) based on nominal
estimates 1 and Q with a risk aversion parameter A > \.

Note that Theorem 2.2 holds if constraint x > 0 is absent or additional linear
constraints are imposed.

The interval uncertainty sets have also been used for robust MV portfolio
optimization, eg, in Tiitiincii and Koenig (2004). For example, the uncertainty sets
Suand Sp below can be considered:

Su={p:put <p=<puY

So={0:0"<0<0Y% 0>0)

where u”, uY, O and QU are lower and upper bounds, and Q > 0 indicates that
the covariance matrix Q is symmetric positive semi-definite. Tiitiincii and Koenig
(2004) show that when QU >0, u’ and QU are the optimal solutions for the
problem:
T T
max —pu x+Aix"'0x, A=>0
neS,,0€So H 0 N

regardless of the values of non-negative A and non-negative vector x. When Q
is assumed to be known, the min-max robust problem (2) with Q2 = {x : elx =1,
x > 0} is reduced to the following standard MV optimization problem:

min —(pLL)TX + AxTQx
X

®)
T

subjectto e’ x =1, x>0

Thus, if the interval uncertainty set is obtained according to a quantile of
mean returns, min-max robustness can be regarded as a quantile-based robustness
approach. Note that the only difference between (8) and (1) is that u is replaced
by wu’ in (8). Thus the min-max robust MV portfolio now becomes sensitive
to specification of p”. In practice, variations in u’ when specified from return
samples can be quite large. Moreover, portfolios based on the worst case of return
scenario in an uncertainty set show very pessimistic performance and the maximum
return portfolio typically concentrates on a single asset, as in the standard MV
portfolio case. Note that adjusting conservatism is done by eliminating the worst
sample scenario, which runs counter to the robust objective.

3 CONDITIONAL VALUE-AT-RISK ROBUST MEAN-VARIANCE
PORTFOLIOS

We can regard uncertainty in mean portfolio return due to estimation error in asset
mean returns, which can be considered as estimation risk. Based on statistical
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properties for the estimates, this estimation risk can be measured using different
risk measures, eg, VaR and CVaR.

We now propose a CVaR robust MV portfolio optimization formulation, in
which the return performance is measured by CVaR of the portfolio mean return,
when the asset mean returns are uncertain. In contrast to the min-max robust model,
which depends on the worst sample scenario of 1, the CVaR robust model produces
a portfolio based on a tail of the mean loss distribution.

CVaR, as arisk measure, is based on VaR, which can be regarded as an extension
to the notion of the worst case. Consider a specific risk denoted by a random
variable L (which typically corresponds to loss). Assume that L has a density
function p(I). The probability of L not exceeding a threshold « is given by:

U() = /l p(l)dl 9)

Here we assume that the probability distribution for L has no jumps; thus W («) is
everywhere continuous with respect to .

Given a confidence level 8 € (0, 1), eg, B = 95%, the associated VaR, VaRg, is
defined as:

VaRg =min {o € R : ¥ (a) > B} (10)

The corresponding CVaR, denoted by CVaRg, is given by:

1
CVaRg =E(L | L > VaRg) = —— Ip(D) dl (11
1 — B Ji>var,

Thus CVaRgp is the expected loss conditional on the loss being greater than or equal
to VaRg. In addition, CVaR has the following equivalent expression:

CVaRg = min(e + (1 = f)"'E([L — a]") (12)

where [z]T = max (z, 0); see Rockafellar and Uryasev (2000).

In contrast to VaR, CVaR is a coherent risk measure and has additional attractive
properties such as convexity; see, for example, Artzner et al (1997) and Rockafellar
and Uryasev (2000). Note that whereas VaR is a quantile, CVaR depends on the
entire tail of the worst scenarios corresponding to a given confidence level.

We consider a CVaR robust MV optimization by replacing the actual mean loss
with a CVaR measure of mean loss. We denote this measure of risk as CVaR*,
where the superscript © emphasizes that the risk measure is with respect to the
uncertainty in . For a portfolio of n assets, we let the decision vector x € €2 be the
portfolio percentage weights, and ;+ € R" be the random vector of the mean returns.
We assume that p has a probability density function. Thus CVaRg (—uTx) is the
mean of the (1 — 8)-tail (worst-case) mean loss —u” x. In other words:

CVaRg(—uTx) =min(e + (1 — B) 'E((—u"x — a]™)) (13)
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Min-max robust and CVaR robust mean-variance portfolios

Replacing the mean loss —u” x by CVaRg (—u ' x) in the MV model, a CVaR
robust MV efficient portfolio is determined as the solution to the following problem:

min CVaRg(—pLTx) +2xT Ox
g (14)
subjectto x € Q

where Q is an estimate of the variance matrix Q. Recall that in this paper we ignore
the estimation risk in the covariance matrix. Solving (14) with different values
of A ranging from 0 to co, we can generate a sequence of CVaR robust optimal
portfolios.

Define the following auxiliary function:

1
Fax, @) =a + —— f [~ x — ol p(w) du (15)
1-8 HER"
Assume that the distribution for w is continuous, CVaR¥ is convex with respect to
x, and Fg(x, a) is both convex and continuously differentiable. Therefore, for any
fixed x € Q, CVaRg (—uT x) can be determined as follows:

CVaRj (—p" x) = min Fp(x, @) (16)
o

Thus:
min(CVaRg(—MTx) +axT Ox) = min(Fg(x, a) + axT Ox) (17)
X X,a

where the objectives on both sides achieve the same minimum values, and a pair
(x*, o™) is the solution of the right-hand side if and only if x* is the solution of the
left-hand side and o € argmin, . Fg(x*, ).

While the min-max robust optimization neglects any probability information on
the mean distribution, once the uncertainty set is specified, CVaR robust portfolios
computed from (14) depend on the entire (1 — §)-tail of the mean loss distribution.
Using the CVaR robust MV model (14), adjusting the confidence level 8 of CVaR*
naturally corresponds to adjusting an investor’s tolerance to estimation risk. When
the 8 value increases, the corresponding CVaRg of the mean loss increases. For a
high confidence level (8 close to 1), the optimization focuses on extreme mean loss
scenarios; this corresponds to an investor who is highly averse to the estimation risk
in . The resulting optimal portfolio tends to be more robust. Conversely, when the
B value decreases, the resulting optimal portfolio becomes less robust. As § —
0, all scenarios of the mean loss are considered; thus less emphasis is placed on
the worst mean loss scenarios. Note that the choice of 8 (or portfolio robustness)
implicitly affects the portfolio’s expected return: the maximum expected return
achievable for a higher g is generally less than that for a lower 8. The choice of
B depends on an individual investor’s risk averse characteristics with respect to the
estimation risk in .

Using Monte Carlo simulations, problem (14) can be solved as a QP problem.
Given 1, na, . .., im, where each p; is an independent sample of the mean return
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vector from its assumed distribution, a CVaR robust MV optimization problem (14)
can be approximated by the following QP problem:

1
min @ m(l—ﬁ)ZZ’Jr“ 0x
subjectto x € Q (18)
zi >0
Zi‘f‘lLiTx-f-OlZO, i=1,....m

This QP problem has O(m + n) variables and O(m + n) constraints, where m is
the number of p-samples and 7 is the number of assets.

Using concrete examples and the QP formulation (18), next we demonstrate
properties of the CVaR robust portfolios and the impact of the B value.

4 COMPARING MIN-MAX ROBUST AND CONDITIONAL
VALUE-AT-RISK ROBUST MEAN-VARIANCE PORTFOLIOS

In this section, we compare min-max robust portfolios with CVaR robust portfolios
in terms of robustness, efficiency and diversification properties. In the subsequent
computational examples, we assume that return samples are drawn from a joint
multi-normal distribution with a known mean return p and covariance matrix Q.
We evaluate actual performance of the min-max robust and CVaR robust portfolios.

Both the CVaR robust model and the min-max robust model depend on the
distribution assumption of w, in the latter case in particular assuming that the uncer-
tainty interval for u corresponds to a confidence level. Unfortunately, in general,
this distribution may not be known. In practice, one can use the resampling (RS)
technique (see, for example, Michaud (1998)) to generate some possible/reasonable
realizations. We implement this technique as follows. Assume that the initial 100
return samples are from the normal distribution with mean p and covariance matrix
Q. We then compute the mean & and covariance matrix estimate O based on
these return samples. Assuming that x and Q are representative of p and Q,
we simultaneously generate 10,000 sets of independent return samples, each set
consisting of 100 return samples. Regarding each set of 100 samples as equally
likely to be observed, we compute the mean of each sample set and obtain 10,000
estimates of mean return as equally likely. These 10,000 estimates now form the
uncertainty set for the mean return. In addition, the boundary vectors 1% and u?
can be determined by selecting the lowest and highest values respectively from
these estimates for mean returns.

Alternatively, we can generate samples that are consistent with the statistical
property (3), ie, (T(T — n)/(T — )n)(n — wWTO Y (n — ) has a X,f distribution
with n degrees of freedom. This technique is subsequently referred to as the CHI
technique.

Let GG” be the Cholesky factorization for the symmetric positive semi-definite
matrix Q, where G is a lower triangular matrix. Equation (3) specifies that the
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Min-max robust and CVaR robust mean-variance portfolios

square of the 2-norm of y = G (i —p) has a )(3 distribution. Given a sample ¢
from the )(3 distribution, we generate a sample y that is uniformly distributed on the
sphere||y||% = (T — 1)n/T(T — n))¢. This can easily be done using the normal—
deviate method (see, for example, Muller (1995); Marsaglia (1972)), as follows: let
z=1lz1,22, ..., zn)  be n x 1 independent standard normals and obtain y from
y =~ (T = Dn/T(T —n)$(/lzl2).

If we generate m independent samples from the x2 distribution, then the
described computation generates m independent samples of y uniformly distributed
on the corresponding spheres. Thus we obtain m independent p-samples via =
i + Gy. We consider both RS and CHI sampling techniques for each example in
the subsequent computational investigation.

To analyze the quality of efficient frontiers from robust optimization, similar
to Broadie (1993), we consider the actual frontier, which demonstrates the actual
performance of the portfolios based on estimates. The actual frontier is the curve
{((V/xW)TOx(1), ux(1)), A >0} in the space of standard deviation and mean
of the portfolio return, where x (1) is the optimal portfolio with the risk aversion
parameter A. For example, if x(A) is obtained from min-max robust portfolio
optimization, this is referred to as the actual min-max frontier.

We first consider a 10-asset example with data given in Table B.2 in Appendix B.
We generate p-samples using the RS sampling technique and the CHI sampling
technique as described. For a set of 10,000 samples (which depends on the initial
100 return samples) of p, we obtain a CVaR robust actual frontier by solving
the CVaR robust problem (18) for different A values. For the 10-asset example
using CHI sampling, Figure 2 compares the actual frontier from the CVaR robust
formulation with the actual frontier from the standard MV optimization based on
the nominal estimates. We note that, unlike with min-max robust and the ellipsoidal
uncertainty set based on the statistics (3), this CVaR actual frontier lies above the
actual frontiers from the MV optimization based on the nominal estimates.

To illustrate characteristics of the actual frontier, we repeat this computation 100
times, each with a different 100 random initial return samples. For each 10,000
u-samples generated, we compute three separate actual frontiers for confidence
levels B = 90%, 60% and 30% respectively. The top plots (a)—(c) in Figure 3 are for
the RS technique, and the bottom plots (d)—(f) are for the CHI sampling technique.
Note that the right-most points on actual frontiers correspond to the portfolios with
the maximum return achievable using the CVaR robust formulation.

We make the following three main observations regarding the CVaR robust
portfolios.

CVaR robust actual frontiers vary with the initial data

Similarly to the min-max robust actual frontiers, the CVaR robust actual frontiers
vary with the initial data used to generate sets of -samples. The variation of actual
frontiers mainly comes from the variation in the estimate j, computed from 100
initial return samples. As only a limited number of return samples are available
in practice, variations inevitably exist in robust MV models, whether min-max
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FIGURE 2 CVaR robust actual frontiers and actual frontiers based on MV optimiza-
tion with nominal estimates for the 10-asset example. Nominal actual frontiers are
calculated by using the standard MV model with parameter i estimated based on
100 return samples (with data in Table B.2).
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robust or CVaR robust is considered. The level of variation can be considered as
an indicator of the level of estimation risk exposed by portfolios from a robust
model. It can be observed that the variation in actual frontiers seems to increase as
the confidence level § decreases.

A more risk averse investor who expects to take less estimation risk may choose
a larger B. On the other hand, an investor who is tolerant to estimation risk may
choose a smaller 8. The plots in Figure 3 depict the positive association between
and a portfolio’s conservatism level.

In addition, we note that the variations of the actual frontiers in Figure 3(a)-
(c) are larger than the ones in Figure 3(d)—(f). Figure C.1(a)-(h) in Appendix C
compares the (marginal) distribution for each of the 8 assets generated using the

The Journal of Risk Volume 11/Number 3, Spring 2009

First Proof Ref: Zhu11(3)/39470e February 5, 2009



05

06

07

08

09

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

FIGURE 3 100 CVaR

Min-max robust and CVaR robust mean-variance portfolios

robust actual

frontiers calculated based on

10,000

u-samples. The 10-asset example (with data in Table B.2).
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RS and CHI sampling techniques and charted in Table B.1. As can be seen, the
samples obtained from the CHI technique have larger variance, which may explain
the difference in actual frontiers between the two sampling techniques.

Higher expected return can be achieved with a smaller confidence
level B

In addition to variation in actual frontiers, we also evaluate the “average” perfor-
mance of these actual frontiers. We plot the “average” actual frontiers graphed in
Figure 3 against the true efficient frontier in Figure 4. The true efficient frontier
is used as a benchmark to assess the portfolio efficiency. The plots for the RS
technique are on the top panel, while the ones for the CHI technique are on the
bottom panel. As can be seen, when 8 approaches 1, CVaR robust actual frontiers
become shorter on average; the maximum expected return achievable becomes
lower. As expected, an investor who is more averse to estimation risk obtains
smaller return; this confirms that it is reasonable to regard § as an indicator for the
level of tolerance for estimation risk. On the other hand, an investor who is more
tolerant toward estimation risk chooses a smaller 8, and the maximum expected
return achievable becomes higher.

CVaR robust actual frontiers generated using the RS and the CHI sampling
techniques also have different “average” performance. The “average” CVaR-based
actual frontiers in Figure 4(d)—(f) achieve lower maximum expected returns than
the corresponding ones in Figure 4(a)—(c). This happens because the p-samples
generated using the CHI technique have larger deviations, a result that leads to
worse mean loss scenarios.

It is also important to note that although changing the confidence level affects
the highest expected return achievable, the deviation of the CVaR robust actual
frontiers from the true efficient frontier does not seem to be affected. In addition,
on “average”, the deviation seems to be relatively insensitive for different sampling
methods. On the other hand, the deviation from the true efficient frontier for
the min-max actual frontiers varies significantly with the return percentile, which
specifies L. This can be observed from Figure 5(a)—(c), where 100 min-max actual

frontiers in each plot are computed based on different percentiles corresponding to

uk.

The © samples, based on which the percentiles are calculated, are generated
using the CHI sampling technique. Note that the same p samples used for
generating the CVaR actual frontiers in Figure 3(d)—(f) are also used here. Note
also that the zero percentile corresponds to the case when !’ equals the worst
return scenario, and the resulting min-max actual frontiers in Figure 5(a) consist of
the portfolios that have the best performance for the worst sample scenario.

To choose the 50 percentile for 1%, half of the /1« samples are excluded from the
uncertainty set. As can be seen clearly, when the percentile value changes from 0
to 50, not only the variation but also the overall appearance of the min-max actual
frontiers change significantly. This causes their actual “average” frontiers, which
are plotted in Figure 5(d)—(f), to have different deviations from the true efficient
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FIGURE 4 Average CVaR robust actual frontiers calculated based on 10,000
u-samples. The 10-asset example.
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frontier. In addition, for this 10-asset example, the min-max actual frontiers in
Figure 5(a)—(c) exhibit more variations in comparison to the CVaR actual frontiers
in Figure 3(d)—(f).

CVaR robust portfolios are more diversified

It is commonsense that portfolio diversification reduces risk. Portfolio diversifi-
cation means spreading the total investment across a wide variety of assets; the
exposure to individual asset risk is then reduced.

The traditional MV model (1) has the following diversification characteristics.
As the risk aversion parameter A decreases, the level of diversification decreases.
This will increase both the portfolio expected return and its associated return
risk. When A =0, the portfolio typically achieves the highest expected return
by allocating all investment in the highest-return asset without considering the
associated return risk. The portfolio with A =0 is referred to as the maximum-
return portfolio. In fact, even with A # 0 but sufficiently small, the optimal MV
portfolio tends to concentrate on a single asset. Given that the exact mean return
is unknown, this means that the optimal MV portfolio can concentrate on a wrong
asset due to estimation error. This can result in potentially disastrous performance
in practice.

For the min-max robust MV model (2) with an interval uncertainty set for u,
the min-max robust portfolio is determined by the lower bound of the interval,
wk. Thus, for the maximum-return portfolio computed from the min-max robust
model, the allocation is still typically concentrated in a single asset. Note that this
is independent of the values of ,uL. Moreover, due to estimation error, this allocation
concentration may not necessarily result in a higher actual portfolio expected return.
As an example, Figure 5 depicts that, on “average”, the maximum expected return
of the min-max actual frontier is significantly lower than the one of the true efficient
frontier.

Instead of focusing on the single worst-case scenario % of 11, the CVaR robust
formulation yields an optimal portfolio by considering the (1 — p)-tail of the
mean loss distribution. This forces the resulting portfolio to be more diversified.
Therefore, even when ignoring return risk (ie, A = 0), the allocation of the CVaR
robust portfolio (which typically achieves the maximum return for the given B) is
usually distributed among more than one asset, if S is not too small. We illustrate
this next with examples.

Our first example illustrates the diversification property of the maximum-return
portfolio computed from the CVaR robust model. We compute both the min-max
robust and the CVaR robust (8 = 90%) actual frontiers for the §-asset example with
data given in Table B.1 in Appendix B. The computations are based on 10,000 mean
return samples generated from the CHI sampling technique. Each frontier consists
of the portfolios computed using a sequence of A ranging from 0 to 1000.

We compare the composition graphs of the portfolios on the two actual frontiers.
They are presented in Figure 7(a) and 7(b) respectively. For the minimum-return
portfolio at the left-most end of each composition graph, most of the investment is

The Journal of Risk Volume 11/Number 3, Spring 2009

First Proof Ref: Zhu11(3)/39470e February 5, 2009



01

02

=]

3

05

06

07

08

09

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

FIGURE 5 100 min-max actual frontiers based on different percentiles for u% for

Min-max robust and CVaR robust mean-variance portfolios

the 10-asset example. Samples of 1 are generated using the CHI technique.
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FIGURE 6 Compositions of min-max robust and CVaR robust (90%) portfolio
weights.
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allocated in Asset 5 and Asset 8. As the expected return value increases from left
to right, both assets are gradually replaced by a mixture of other assets. However,
close to the maximum-return end of the graphs, the compositions in Figure 7(b) are
more diversified than in Figure 7(a). In Appendix D, Table D.1(a) and D.1(b) list
the portfolio weights of the two actual frontiers for each A value. When A = 0, the
min-max robust maximum-return portfolio in Table D.1(a) focuses all holdings in
Asset 4, whereas the CVaR robust portfolio is diversified into five different assets;
also see Table D.1(b) in Appendix D.

Next, we illustrate the impact of the choice of the confidence level § on
diversification. Using the same data as in the first example, we compute the CVaR
robust actual frontiers for  =60% and B =30%. The portfolios’ composition
graphs are presented in Figure 8(a) and 8(b), respectively. The portfolio weights
corresponding to the frontiers are listed in Table D.2(a) and D.2(b), respectively,
in Appendix D. Comparing the compositions in Figure 7(b), 8(a) and 8(b), it can
be observed that the weights become less diversified as the value of 8 decreases.
In particular, when A = 0, the CVaR robust portfolio for 8 = 30% in Table D.2(b)
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FIGURE 7 Compositions of CVaR robust (60%) and (30%) portfolio weights.
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(b) CVaR robust (30%) portfolios

allocates all investment in a single asset. Unlike the min-max robust portfolio in
Table D.1(a), which is concentrated on Asset 4, this portfolio is concentrated in
Asset 1.

For the CVaR robust model, the relationship between decrease in diversification
and decrease in § further confirms that it is reasonable to regard j as a risk aversion
parameter for estimation risk. An investor who is risk averse to the estimation risk
can naturally choose a large 8 value and obtain a more diversified portfolio. As
discussed before, this portfolio typically achieves less expected return. The risk
averse investor can also expect less variation, with respect to the initial data, in the
portfolios generated from the CVaR robust model with a large B.

5 AN EFFICIENT COMPUTATIONAL TECHNIQUE FOR COMPUTING
CONDITIONAL VALUE-AT-RISK ROBUST PORTFOLIOS

One potential disadvantage of the CVaR robust formulation (14), in comparison to
the min-max robust formulation (2), is that it may require more time to compute a
CVaR robust portfolio than a min-max robust portfolio.
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In Section 3, we have shown that the CVaR robust portfolio optimization
problem (14) can be approximated by a QP problem (18). Given a finite number
of mean return samples, the linear programming (LP) approach uses a piecewise
linear function to approximate the continuous differentiable CVaR function. When
more samples are used, the approximation becomes more accurate. However,
we illustrate that this QP approach can become inefficient for large-scale CVaR
optimization problems.

These computational efficiency issues have been investigated in Alexander et al
(2006) for CVaR minimization problems. The main difference is that the CVaR
robust MV portfolio problem (14) in this paper has the additional quadratic term
xT Qx, included because variance is used as the return risk measure. We now
compare the QP approach (18) and the smooth technique proposed in Alexander
et al (2006) in terms of efficiency for computing CVaR robust MV portfolios. We
note that the machine used in this study is different from the one used in Alexander
et al (2006), and the computing platform and software are also different versions.
The computation in this paper is done in MATLAB version 7.3 for Windows XP,
and run on a Pentium 4 CPU 3.00 GHz machine with 1 GB RAM. The QP problems
are solved using the MOSEK Optimization Toolbox for MATLAB version 7.

In Section 3, we have stated that a CVaR robust MV portfolio can be computed
approximately by solving a QP (18):

min o+ — zi +Ax" Ox
m(l—ﬂ);’

X,2,a

subjectto x € Q
zi >0
Gulx+az0, i=1....m

A convex QP is one of the simplest constrained optimization problems, and can
be solved quickly using software such as MOSEK. However, this QP approach
can become inefficient when the number of simulations and the number of assets
become large. In this formulation, generating a new sample will add an additional
variable and constraint. For n risky assets and m mean return samples, the problem
has a total of O (n + m) variables and O (n + m) constraints. Alexander et al (2006)
analyze the computation cost of both the simplex method and the interior-point
method when they are used in the LP approach for CVaR optimization. They show
that computational costs using both methods can quickly become quite large as the
number of samples and/or assets becomes large. The efficiency of a QP solver such
as MOSEK depends heavily on the sparsity structures of the QP problem. The QP
problem (18) has an m-by-(n + 1) dense block in the constraint matrix.

In Table 1 we report the CPU time required to solve the simulation CVaR
optimization problem (18) for different asset examples with different numbers of
simulations. In this computation, we set the risk aversion parameter A = 0; thus (18)
is a LP. Both the RS technique and the CHI technique are considered to generate
the mean return samples.
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TABLE 1 CPU time for the QP approach when A = 0: 8 = 0.90.

RS technique (CPU sec) CHI technique (CPU sec)
#samples 8assets 50assets 148 assets 8 assets 50 assets 148 assets
5,000 0.41 1.84 9.77 0.39 1.75 7.06
10,000 0.88 3.56 20.41 0.77 4.25 10.38
25,000 2.78 9.17 32.69 2.56 10.83 34.97

From Table 1, it is clear that when we use MOSEK, the computational cost
increases quickly as the sample size and the number of assets increase. For instance,
for each size of RS sample count, the CPU time required for the 50-asset example
is at least twice that required for the 8-asset one. When the size of the CHI samples
is increased from 10,000 to 25,000, the CPU time is increased by more than 150%
for each asset sample.

Note that the CPU time reported here is for solving a single QP for a given risk
aversion parameter A. To generate an efficient frontier, many QP problems need
to be solved for different risk aversion parameter values. This results in very large
CPU time differences for generating an efficient frontier.

A smoothing approach for CVaR robust MV portfolios

As an alternative to the QP approach, we can solve the CVaR minimization problem
more efficiently via a smoothing technique proposed by Alexander et al (2006).
The smoothing technique directly exploits the structure of the CVaR minimization
problem. It has been shown in Alexander et al (2006) that the smoothing approach
is computationally significantly more efficient than the LP method for the CVaR
optimization problem. We investigate the computational performance comparison
between the QP approach and the smoothing approach for CVaR robust MV
portfolios.
As mentioned in Section 3:

min (CVaRg(x) + axT Ox) = min (Fg(x, @) + Ax” Qx)
X X, 0
where:

1-p
Note that the function Fg(x, o) is both convex and continuously differentiable
when the assumed distribution for p is continuous.
The QP approach (18) approximates the function Fg(x, o) by the following
piecewise linear objective function:

1
Fotra) =a+ 1 | LG — el p du (19)
HER™

I _ ; - ., . +
Fﬂ(x,a)—a—l—m(l_ﬁ) ;[ nl'x —al (20)

where each p; is a mean vector sample. When the number of mean return samples
increases to infinity, the approximation approaches to the exact function.
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FIGURE 8 Smooth approximation and piecewise linear approximation for g(«) =
E(max(u — a, 0)). For the top plot, m = 3. For the bottom plot, m = 10,000.

3 T T T
piecewise linear
= 25+ ~ — - smooth approx. ¢ = 1
‘6 ~.
e 2+ S E
c ~
o N
® 1.5F o 4
£ T
x ~
o 1r T~ E
Q ~.
g >~
0.5 el 4
0 | L% | | | | - A*\*\ Bl -
-4 -35 -3 -25 -2 -15 -1 -0.5 0 0.5 1
o
5 T T
—— piecewise linear L
= 4t — — smooth approx. ¢ = 0.01
R
e
c 3r- B
9
g
= 2 |- -
o
Q
[=%
< 1r -
0 1 1 1 1 1
-6 -4 -2 0 2 4 6

Instead of using F, p(x, o), Alexander et al (2006) suggest a piecewise quadratic
function Fg(x, a) to approximate Fg(x, a). Let:

~ 1 m
Fpx,o)=a+——— Y pe(—pfx — ) 1)
f m(1 — ) ; A
where p¢(z) is defined as:

z ifz>e€
22 1 1 22
E—FEZ—FZG if—e<z<e (22)
0 otherwise

with € > 0 being a given resolution parameter. Note that p(z) is continuous
differentiable and approximates the piecewise linear function max(z, 0). Figure 8
illustrates smoothness of (1/m) Z;"zl max(z; — «, 0) and (1/m) Z;"zl Pe(zi — )
for m = 3 and m = 10, 000 respectively.
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TABLE 2 CPU time for computing maximum-return portfolios (A = 0), MOSEK
versus smoothing (e = 0.005): 8 = 90%.

MOSEK (CPU sec) Smoothing (CPU sec)
#samples 8 assets 50assets 148 assets 8 assets 50 assets 148 assets
(a) RS technique
5,000 0.41 1.84 9.77 0.34 0.50 2.55
10,000 0.88 3.56 20.41 0.56 1.34 4.08
25,000 2.78 9.17 32.69 1.22 3.28 8.11
(b) CHI technique
5,000 0.39 1.75 7.06 0.42 0.34 1.98
10,000 0.77 4.25 10.38 0.75 0.50 413
25,000 2.56 10.83 34.97 1.77 1.36 10.25

Applying the smoothing formulation (21), CVaR robust model (14) can be
formulated as the following problem:

min o +

X,

subjectto x € Q

1 " -
s 3 pule @+
i=1

(23)

Whereas QP (18) has a total of O(n + m) variables and O (n + m) constraints,
the smoothing formulation (23) has only O(n) variables and O(n) constraints.
Therefore, increasing the sample size m does not change the number of variables

and constraints.

In Table 2, we report the CPU time for the smoothing method (23) for the

same examples in Table 1, which is included again for comparison. The smoothed

minimization problem (23) is solved using the interior-point method from Coleman
and Li (1996) for non-linear minimization with bound constraints. The computation
is done for both the RS and CHI sampling techniques, for which the CPU time is
reported in Table 2(a) and 2(b) respectively. Comparing the CPU time between the

two approaches, we observe that the smoothing approach is much more efficient

than the QP approach for both sampling techniques.

The problem of 148 assets and 25,000 samples can now be solved in less than
11 CPU seconds using the smoothing approach, whereas the same problems are
solved in more than 30 CPU seconds via the QP approach. The CPU efficiency

gap increases as the scale of the problem (including sample size and the number of

assets) becomes larger.
For 8 assets and 5,000 samples, there is a small difference between the CPU time

used by the two approaches. However, when the number of assets exceeds 50 and

the sample size exceeds 5,000, the difference becomes significant. These compar-

isons show that the smoothing approach achieves significantly better computational

efficiency.

Using four different A values, Table 3 illustrates that whereas the CPU time
required for QP increases significantly with the risk aversion parameter, the time
required for the smoothing method is relatively insensitive to the value of A.
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TABLE 3 CPU time for different A values for the 148-asset example: 8 = 90% (e =
0.005).
MOSEK (CPU sec) Smoothing (CPU sec)
#samples A=0 0.1 10 1,000 0 0.1 10 1,000

5,000 1042 11.13 1475 15.19 231 216 2.14 2.58
10,000 18.33 42.77 29.41 36.66 3.70 3.55 4.00 3.36
25,000 29.59 89.06 9531 12272 766 795 7.16 7.58

TABLE 4 Relative difference Qcyare (in percentage) for different sample sizes and
e values, B =95% and A = 0.

#samples 50 assets 148 assets 200 assets

(a) e = 0.005
10,000 —-1.1225 —-0.2253 —0.2260
25,000 —0.0939 —-0.0889 —0.0883
50,000 —0.0513  —0.0459 —0.0472

(b) e = 0.001
10,000 —-0.2974  -0.2236 —0.2234
25,000 —0.0934 —-0.0882 —0.0880
50,000 —0.0504  —-0.0454 —0.0466

To analyze the accuracy of the smoothing approach (23), we determine the
following relative difference in the CVaR* value computed via that approach:

CVaRY — CVvaR},
|CVaR% |

where CVaR}, and CVaR} are the CVaR* values obtained by using the QP
approach (18) and the smoothing approach (23), respectively. Table 4 compares the
Qcvare in percentage for different sample sizes and € values. As can be seen, given
the same €, the absolute value of Qcy,r+ decreases when the sample size increases;
this indicates that the differences between the CVaR* values approximated by the
two approaches become smaller. In addition, decreasing the value of € reduces these
differences.

Ocvarr = (24)

6 CONCLUDING REMARKS

The classic MV portfolio optimization is typically based on the nominal estimates
of mean returns and a covariance matrix from a set of return samples. Given that the
number of return samples is limited in practice, MV frontiers can vary significantly
with the set of initial return samples, potentially resulting in extremely poor actual
performance.

In this paper, we investigate the impact of estimation risk and how it is addressed
in a robust MV portfolio optimization formulation. We consider estimation risk
only in mean returns and assume that the covariance matrix is known.

Recently, min-max robust portfolio optimization has been proposed to address
the estimation risk. We show that with an ellipsoidal uncertainty set based on the
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statistics of the sample mean estimates, the robust portfolio from the min-max
robust MV model equals the optimal portfolio from the standard MV model based
on the nominal mean estimate but with a larger risk aversion parameter. Assuming
that the uncertainty set is an interval [E, 1Y, the min-max robust portfolio is
essentially the MV optimal portfolio generated based on the lower bound u”, which
can be difficult to select in general. The min-max robust MV portfolio can also be
very sensitive to the initial data used to generate an uncertainty set.

The min-max robust optimization problem becomes more complex when other
types of uncertainty sets are used. By nature, the min-max robust model emphasizes
the best performance under the worst-case scenario. Adjustment of the level of
conservatism in the min-max robust model can be achieved by excluding bad
scenarios from the uncertainty sets, which is unappealing. The min-max robust
portfolio also ignores any probability information in the uncertain data.

We propose a CVaR robust MV portfolio formulation to address estimation risk.
In this model, a robust portfolio is determined based on a set of worst-case mean
returns, rather than nominal estimates (classic MV) or a single worst-case scenario
(min-max robust). When the confidence level 8 is high, CVaR robust optimization
focuses on a small set of extreme mean loss scenarios. The resulting portfolios are
optimal against the average of these extreme mean loss scenarios and tend to be
more robust. In addition, actual frontiers with a larger confidence level g tend to be
shorter, with more difficulty in achieving higher expected returns.

More aggressive MV portfolios can be generated with a smaller confidence level
B in the CVaR robust framework. In contrast to the min-max robust model, the
decrease in the level of the conservatism is achieved by including a larger set of poor
mean returns; this results in less focus on the extreme poor scenarios. Decreasing
the confidence level 8 corresponds to more acceptance of estimation risk. Indeed, it
seems reasonable to regard § as a risk aversion parameter for estimation risk. Our
computational results also suggest that there is little variation in the efficiency of
the actual frontiers from the CVaR robust formulation.

In a sense, the min-max robust model is essentially quantile-based, assuming that
the uncertainty set is determined based on quantiles of the uncertain parameters.
The CVaR robust model, on the other hand, is tail-based. Because of this, there is a
crucial difference in the diversification of the robust portfolios generated from the
two approaches. In spite of the robust objective, the investment allocation from
the min-max robust portfolio with A =0 (which achieves the maximum return)
typically concentrates on a single asset, no matter what confidence level is used
to determine p’. The corresponding CVaR robust portfolio, on the other hand,
typically consists of multiple assets even for a high confidence level, eg, 8 = 90%.
The level of diversification decreases as the confidence level decreases.

In addition, we investigate the computational issues in the CVaR robust model,
and implement a smoothing technique for computing CVaR robust portfolios.
Unlike the QP approach, which uses a piecewise linear function to approximate
the CVaR function, the smoothing approach uses a continuously differentiable
piecewise quadratic function. We show that the smoothing approach is computa-
tionally more efficient for computing CVaR robust portfolios. In addition, as the
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number of mean return samples increases, the differences between the CVaR values
approximated by the two approaches become smaller.

In Schottle and Werner (2008), it has been shown that among 14 strategies
considered (including the min-max robust strategy), no strategy can consistently
outperform the naive strategy, based on out-of-sample performance. It will be
interesting to investigate the degree of improvement of the proposed CVaR robust
strategy in economic terms.

APPENDIX A PROOFS OF THEOREMS

We first prove Theorem 2.1, which is stated here again for convenience.

THEOREM A.1 Assume that Q is symmetric positive definite and x > 0. The min-
max robust portfolio for (6) is an optimal portfolio of the mean-standard deviation
problem (5) with nominal estimates . and Q for a larger risk aversion parameter

P

PROOF For any feasible x, let u* be the minimizer of the inner optimization
problem in (6) with respect to u; that is, u* solves:

min pLTx
"
subjectto (2 — )" Q7 (i —p) < x
Then there exists some p < 0 such that:
—1 * =N __
xX—pQ (W —pn)=0

Note that p # 0, as x = 0 is not a feasible point for (6). Thus:

1
nW*=p0Ox+i, wherep=—<0
0

From: 1 1
Q7 (u' —p)=pQ3x
and:
(n—uH"0 ' (h—pn*)=x
we have:
52 — TX and p= _i
x'QOx VxT Qx

Thus the min-max robust mean-standard deviation portfolio can be obtained from:

rr;in —i"x + OV XT Ox

Tx:l, x>0

subjectto e
This completes the proof. Il
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We now prove Theorem 2.2, which is stated again here for convenience.

THEOREM A.2 Assume that Q is symmetric positive definite and x > 0. Any robust
portfolio from the min-max robust MV model (7) is an optimal portfolio from the
standard MV model based on the nominal estimates (1 and Q with a risk aversion
parameter): > A,

PROOF From the proof of Theorem 2.1, the min-max robust MV problem (7) is
equivalent to:

min  —i"x + axT Qx + /xvxT Qx
X

T

subjectto e'x=1, x>0

As this is a convex programming problem, it is easy to show that there exists x > 0
such that the above problem is equivalent to:

min —/ILTx + AxTQx
X

subjectto  vxT Qx < x

eszl, x>0

In addition, the above problem is equivalent to:

min — ﬂTX + AxTQx
X

subject to xTQx < )22
From the convexity of the problem and the Kuhn-Tucker conditions, there exists
A > 0 such that the above problem is equivalent to:

min —ﬁTx + )»xTQx + XxTQx

X

subject to el x = 1, x>0

This completes the proof. O
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o

i+ APPENDIX B TABLES OF MEAN RETURNS AND COVARIANCE
0 MATRIX

03

+  TABLE B.1 Mean vector and covariance matrix for an 8-asset portfolio problem.

05

o

o6 1072x  Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset6 Asset7 Asset8
o7 1.0160 0.47460 0.47560 0.47340 0.47420 —0.0500 —0.1120 0.0360

08 Asset 1 0.0980
Asset 2 0.0659 0.1549
Asset 3 0.0714 0.0911 0.2738
10 Asset4  0.0105 0.0058 —0.0062 0.0097
1 Asset 5 0.0058 0.0379 -0.0116 0.0082 0.0461
Asset 6 —0.0236 —0.0260 0.0083 —-0.0215 -0.0315 0.2691
12 Asset 7 —0.0164 0.0079 0.0059 —-0.0003 0.0076 —0.0080 0.0925
13 Asset 8  0.0004 -—0.0248 0.0077 —0.0026 —0.0304 0.0159 —0.0095 0.0245

09

s TABLE B.2 Mean vector and covariance matrix for a 10-asset portfolio problem.

1072x Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8 Asset9 Asset 10
1.0720 1.7618 1.8270 1.0761 1.9845 1.4452 0.9910 1.6353 1.3755 1.8315

o  Asset1 0.2516
Asset 2 0.0766 1.3743
' Asset3 0.1104 0.2847 1.3996
2 Asset4 0.1314 0.0930 0.1027 0.1928
Asset 5 0.0157 0.5610 0.4725 0.0451 1.5981
Asset 6 0.0554 0.3457 0.2769 0.0898 0.3490 0.4787
24 Asset7 0.0937 0.0253 0.0759 0.1010 0.0714 0.0643 0.1664
.5 Asset8 0.1646 0.1757 0.3200 0.1641 0.4721 0.2669 0.1020 0.9013
Asset 9 0.0509 0.1810 0.3275 0.0993 0.2978 0.1783 0.0635 0.1534 0.5731
% Asset 10 0.1515 0.3445 0.3627 0.0966 0.4740 0.2651 0.0611 0.3596 0.2154 1.4041
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APPENDIX C DISTRIBUTIONS FROM RESAMPLING AND CHI
SAMPLING TECHNIQUE

FIGURE C.1 Distribution of mean return samples generated by sampling tech-
niques RS (top) and CHI (bottom) for each asset in Table B.1.

)
- RS
ol

L],#

(a) Asset 1

-
w

"'rs '

w

LAQLL

(e) Asset 5

3

o

o

g o

(b) Asset 2 (c) Asset 3

"

(f) Asset 6 (g) Asset7

)
ol
Tt A i T
oo o
)
- )
i o)
L L] L O [y ou e

(d) Asset 4

A

R T T

3 3
E E
) )
ol

Bu om0 3 TR
do o B om0 oor o om0 ST

p

Tms 0 ows o ooE on

(h) Asset 8

Research Paper

First Proof Ref: Zhu11(3)/39470e

www.thejournalofrisk.com

February 5, 2009

29



30 L.Zhuetal

o

i+ APPENDIX D TABLES OF PORTFOLIO WEIGHTS

02

os TABLE D.1 Portfolio weights for Min-max robust and CVaR robust (90%) actual
o frontiers.

05

A Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8

o (@) Min-max robust portfolio weights

07 0 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
08 100 0.00 0.00 0.00 0.73 0.07 0.00 0.00 0.20

200 0.00 0.00 0.00 0.35 0.30 0.01 0.04 0.43
o 300 0.00 0.00 0.00 0.23 0.30 0.01 0.04 0.43
10 400 0.00 0.00 0.00 0.17 0.32 0.02 0.04 0.46

500 0.01 0.00 0.00 0.13 0.34 0.02 0.04 0.47
600 0.01 0.00 0.00 0.10 0.35 0.02 0.04 0.48

12 700 0.01 0.00 0.00 0.09 0.35 0.02 0.04 0.49
3 800 0.01 0.00 0.00 0.07 0.36 0.02 0.05 0.49
900 0.01 0.00 0.00 0.06 0.36 0.02 0.05 0.50
14 1,000 0.01 0.00 0.00 0.05 0.37 0.02 0.05 0.50
S (b) CVaR robust (90%) portfolio weights
16 0 0.18 0.00 0.00 0.63 0.05 0.08 0.06 0.00
17 100 0.05 0.00 0.00 0.16 0.30 0.04 0.06 0.39
200 0.04 0.00 0.00 0.09 0.34 0.04 0.06 0.44
18 300 0.04 0.00 0.00 0.06 0.36 0.03 0.05 0.47
19 400 0.03 0.00 0.00 0.04 0.37 0.03 0.05 0.48

500 0.03 0.00 0.00 0.03 0.37 0.03 0.05 0.49
600 0.03 0.00 0.00 0.02 0.37 0.03 0.05 0.49

20

21 700 0.03 0.00 0.00 0.02 0.38 0.03 0.05 0.50
» 800 0.03 0.00 0.00 0.01 0.38 0.03 0.05 0.50

900 0.03 0.00 0.00 0.01 0.38 0.03 0.05 0.50
B 1,000 0.03 0.00 0.00 0.01 0.38 0.03 0.05 0.51

24

N
S

TABLE D.2 Portfolio weights for CVaR robust (60%) and (30%) actual frontiers.

26

A Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8

(@) CVaR robust (60%) portfolio weights
0 0.39 0.00 0.00 0.42 0.13 0.06 0.00 0.00

27

e 100 0.06 0.00 0.00 0.21 0.28 0.05 0.06 0.35
30 200 0.04 0.00 0.00 0.1 0.33 0.04 0.06 0.43

300 0.04 0.00 0.00 0.07 0.35 0.03 0.05 0.46
3 400 0.03 0.00 0.00 0.05 0.36 0.03 0.05 0.47
3 500 0.03 0.00 0.00 0.04 0.37 0.03 0.05 0.48

600 0.03 0.00 0.00 0.03 0.37 0.03 0.05 0.49

700 0.03 0.00 0.00 0.02 0.38 0.03 0.05 0.49

34 800 0.03 0.00 0.00 0.02 0.38 0.03 0.05 0.50
900 0.03 0.00 0.00 0.01 0.38 0.03 0.05 0.50
1,000 0.02 0.00 0.00 0.01 0.38 0.03 0.05 0.50

(b) CVaR robust (30%) portfolio weights
0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

33

35

36

38 100 0.07 0.00 0.00 0.25 0.26 0.05 0.06 0.31
I 200 0.05 0.00 0.00 0.12 0.32 0.04 0.05 0.41

300 0.04 0.00 0.00 0.08 0.35 0.03 0.05 0.45
40 400 0.03 0.00 0.00 0.05 0.36 0.03 0.05 0.47
41 500 0.03 0.00 0.00 0.04 0.37 0.03 0.05 0.48

600 0.03 0.00 0.00 0.03 0.37 0.03 0.05 0.49
700 0.03 0.00 0.00 0.02 0.38 0.03 0.05 0.49
4 800 0.03 0.00 0.00 0.02 0.38 0.03 0.05 0.50
900 0.03 0.00 0.00 0.01 0.38 0.03 0.05 0.50

1,000 0.02 0.00 0.00 0.01 0.38 0.03 0.05 0.50

42

44

45
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AUTHOR QUERIES

Please reply to these questions on the relevant page of the proof;
please do not write on this page.

Q1 (page 4):
Is ’typically indicating’ or some such actually meant?

Q2 (page 7):
Okay to change ’leads to’ to ’show’, or what else is meant?

Q3 (page 10):
Okay to change thus, or what else is meant?

Q4 (page 20):
Okay to change thus, or what else is meant?

QS (page 31):
Please provide city

Q6 (page 31):
Please provide city if available
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